Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Nat Commun ; 14(1): 3286, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-20231892

ABSTRACT

Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.


Subject(s)
COVID-19 , Longevity , Female , Humans , Aging , Inflammation , Outcome Assessment, Health Care
2.
Communication Education ; 72(1):40-60, 2023.
Article in English | Scopus | ID: covidwho-2239379

ABSTRACT

This study sought to gain insight into how faculty in other disciplines perceive communication skills as well as to conduct a needs analysis that can help us to develop resources to support faculty who are integrating communication assignments into their disciplinary courses. Survey data were collected from 232 faculty at three large, public universities, and qualitative follow-up interviews were conducted with 12 faculty across institutions and disciplines. Results showed that there is wide variation in the complexity with which our colleagues define communication. Group and interaction skills were among the most valued communication skills, along with a variety of presentation skills. While explanatory and argumentation skills were highly valued, they are also areas where growth is needed. Online and mediated communication skills were rated as least important in the survey that was completed prior to COVID-19, but were discussed as an emerging need in the interviews conducted during the pandemic. © 2022 National Communication Association.

3.
Nat Commun ; 13(1): 3357, 2022 06 10.
Article in English | MEDLINE | ID: covidwho-1947338

ABSTRACT

Vaccines against SARS-CoV-2 have shown high efficacy in clinical trials, yet a full immunologic characterization of these vaccines, particularly within the human upper respiratory tract, is less well known. Here, we enumerate and phenotype T cells in nasal mucosa and blood using flow cytometry before and after vaccination with the Pfizer-BioNTech COVID-19 vaccine (n = 21). Tissue-resident memory (Trm) CD8+ T cells expressing CD69+CD103+ increase in number ~12 days following the first and second doses, by 0.31 and 0.43 log10 cells per swab respectively (p = 0.058 and p = 0.009 in adjusted linear mixed models). CD69+CD103+CD8+ T cells in the blood decrease post-vaccination. Similar increases in nasal CD8+CD69+CD103- T cells are observed, particularly following the second dose. CD4+ cells co-expressing CCR6 and CD161 are also increased in abundance following both doses. Stimulation of nasal CD8+ T cells with SARS-CoV-2 spike peptides elevates expression of CD107a at 2- and 6-months (p = 0.0096) post second vaccine dose, with a subset of donors also expressing increased cytokines. These data suggest that nasal T cells may be induced and contribute to the protective immunity afforded by this vaccine.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , BNT162 Vaccine , CD4-Positive T-Lymphocytes , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunologic Memory , NK Cell Lectin-Like Receptor Subfamily B/immunology , Nasal Mucosa , RNA, Messenger , Receptors, CCR6 , SARS-CoV-2 , Vaccination
4.
SELECTION OF CITATIONS
SEARCH DETAIL